MATH 245 S20, Exam 1 Solutions

1. Carefully define the following terms: even, floor, Double Negation Theorem.

We call integer n even if there exists an integer m with $n=2 m$. Let $x \in \mathbb{R}$. We call integer a the floor of x if $a \leq x<a+1$. The Double Negation Theorem states: Let p be a proposition. Then $\neg \neg p \equiv p$.
2. Carefully define the following terms: Trivial Proof Theorem, Contrapositive Proof Theorem, converse The Trivial Proof Theorem says that for propositions p, q, we have $q \vdash p \rightarrow q$. The Contrapositive Proof Theorem says that for propositions p, q, if $\neg q \vdash \neg p$ is valid, then $p \rightarrow q$ is true. The converse of conditional proposition $p \rightarrow q$ is $q \rightarrow p$.
3. Let a, b, c be integers, with $a \mid b$ and $a \mid c$. Prove that $a \mid(b+c)$.

Because $a \mid b$, there exists some integer s with $b=a s$. Because $a \mid c$, there exists some integer t with $c=a t$. Adding, we get $b+c=a s+a t=a(s+t)$. Because $s+t$ is an integer, $a \mid(b+c)$.
4. Let $m, n \in \mathbb{Z}$ with $m \geq n \geq 0$. Prove that $\binom{m}{n}=\binom{m}{m-n}$.

We have $\binom{m}{n}=\frac{m!}{n!(m-n)!}=\frac{m!}{(m-n)!n!}=\frac{m!}{(m-n)!(m-(m-n))!}=\binom{m}{m-n}$.
5. Use truth tables to prove that $\neg(p \vee q) \equiv(\neg p) \wedge(\neg q)$.

The 4th and 7th columns agree in the truth table at right.

p	q	$p \vee q$	$\neg(p \vee q)$	$\neg p$	$\neg q$	$(\neg p) \wedge(\neg q)$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

6. Let $x \in \mathbb{R}$. Prove that if 6 is irrational, then x is irrational.

6 is rational since $6=\frac{6}{1}$, and 6,1 are both integers. Hence " 6 is irrational" is false, so the implication is vacuously true. (see Thm. 3.7b, if you'd like more details)
7. Prove or disprove: $\forall x \in \mathbb{Z}, x+1>x$.

The statement is true. Let $x \in \mathbb{Z}$ be arbitrary.
Proof 1: Direct proof. Because $(x+1)-x=1 \in \mathbb{N}_{0}$, we know $x+1 \geq x$. But also $x+1 \neq x$. Hence $x+1>x$ (by definition of $>$).
Proof 2: Use a theorem. We know $1>0$ by our entry point. We also know that $x \geq x$ since $x-x=0 \in \mathbb{N}_{0}$. We can combine using a theorem from the book (Thm 1.11) to get $x+1>x+0=x$.
8. Let p, q, r, s be propositions. Simplify $(p \rightarrow q) \rightarrow(r \rightarrow s)$ to use only \vee, \wedge, \neg where only basic propositions are negated.
Step 1: Using Conditional Interpretation three times, our proposition is equivalent to $(s \vee \neg r) \vee \neg(q \vee \neg p)$.
Step 2: Using De Morgan's Law, this is equivalent to $(s \vee \neg r) \vee((\neg q) \wedge(\neg \neg p))$.
Step 3: Using Double Negation, this is equivalent to $(s \vee \neg r) \vee((\neg q) \wedge p)$.
9. State Modus Ponens and prove it using other theorems (without truth tables).

Theorem: Let p, q be propositions. Then $p, p \rightarrow q \vdash q$.
Pf 1: We assume $p, p \rightarrow q$. By conditional interpretation, $q \vee \neg p$. By double negation, $\neg \neg p$. By disjunctive syllogism, q.
Pf 2: We assume $p, p \rightarrow q$. We have $p \rightarrow q \equiv(\neg q) \rightarrow(\neg p)$, its contrapositive. By double negation, $\neg \neg p$. By modus tollens, $\neg \neg q$. By double negation again, q.
10. Prove or disprove: $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \exists z \in \mathbb{R}, \quad y^{2} \leq x^{2}<z^{2}$.

The statement is true. Let $x \in \mathbb{R}$ be arbitrary. Set $y=x, z=\sqrt{x^{2}+1}$. We calculate $y^{2}=x^{2}$, so $y^{2} \leq x^{2}$. We also calculate $z^{2}=\left(\sqrt{x^{2}+1}\right)^{2}=x^{2}+1>x^{2}$. Hence $y^{2} \leq x^{2}<z^{2}$. Note: Other choices of y, z are possible.

